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1.  Chi-square test of goodness of fit.

a.  A discrete production process has been brought under statistical control with the following
probabilities for crystals produced in batch.  A random sample of 30 parts is selected and sorted.
                  type            perfect            fine            standard         reject
               probability       0.14              0.21              0.58             0.07      (total one)
                expected          4.2                6.3               17.4              2.1        (total 30)
                observed           6                   5                  12                 7          (total 30)
Chi-square statistic, the sum of [(O – E)2 / E ] over four cells, is 14.1489.  DF = 4 – 1 = 3 free
parameters.  pSIG = P(chi-square DF 3 >  14.1489) = 0.00271 (Table VII gives .005 to the right of
12.83 under chi-square with 3 DF).  So it is exceedingly rare to get this much disagreement between
model and data just by chance.  This is exceedingly strong evidence against the hypothesis that the
process is operating in the specified probability regime.  Bringing and keeping a process under
control involves consistently taking such measurements and acting upon the results.  EXPECTED
COUNTS 4.1 AND 2.1 ABOVE VIOLATE THE “ALL EXPECTED COUNTS AT LEAST 5”
RULE.  So we are not in conformity with proper practice.  In this case one might overlook the 4.2
but combine “standard” with “fine” and do the chi-square test with DF = 3 – 1 = 2.  You might try
this.  Does it affect the conclusion?

b.  For the above, suppose a process monitor is directed to send an alert if the process rejects a test of
the null hypothesis that the process remains in control, with alpha = 0.01.  What action is taken in
this case?

2.  Chi-square test of no difference.  A new process is being tested against the old process.
Independent samples of parts produced by each process give
                                  best         avg         worst
            old                  10           16             6
            new                  6            6              4
Under the hypothesis that the probabilities of each of the 3 categories are the same for old and new
we’d estimate those shared probabilities as 16/48, 22/48, 10/48 respectively.  We’ve really only
estimated two things because these three must total 1.  The full model has 4 probabilities since each
row has two degrees of freedom.  So the DF is 4 – 2 = 2.  This may also be calculated (r-1)(c-1) =
(2-1)(3-1) = 2 where r = 2 rows and c = 3 columns. “Expected” counts project these shared 3
category probabilities over 32 old and 16 new giving
                                 best                avg                worst
            old             16/48  32        22/48  32      10/48  32
            new            16/48  16        22/48 16       10/48 16
The chi-square calculates to 0.69 with DF = 2.  pSIG = P(chi-square DF 2 > 0.69) = 0.7.   No
evidence against H0.  Note that the lower right expected count is < 5 but won’t affect the conclusion.





3.  Mendel’s Data.  Let’s take at face value the above chi-square values and assume that the 23
experiments are statistically independent.  If so, one is entitled to form a grand chi-square statistic by
totaling column three, the DF for which will be the total of column two.  This is a consequence of
the fact that the chi-square distribution having DF = d is actually the distribution of the sum of



squares of d independent standard normal r.v.  The grand DF obtained from column two will be too
large to use the chi-square tables.

The CLT comes to the rescue.   For large DF = d, if the models leading to these chi-squares are all
correct then
                  (total chi-square – d) / root(2d) ~ Z.
The above works out to (28.5193 - 67) / root(2  67) = -3.32423
so pSIG = P(Z > -3.32423) = 0.999557 ~ 1.

This means the combined data from all 23 experiments is uncomfortably close to what is expected
by Mendel’s theory, as measured by chi-square.  There are other experiments not among these 23
which raise pSIG still higher.

Pearson invented chi-square in 1900, around the time Mendel’s ideas were rediscovered and became
widely known.

4.  Hardy-Weinberg Principle.  Suppose a population of breeding individuals has genotype
distribution
            genotype             AA           Aa           aa
            probability           p1            p2           p3     (total 1)
Ignoring sex, random mating with the parental population dying off will in one generation tend to
produce a new population with
            genotype            AA           Aa          aa
            probability          p2            2p(1-p)   (1-p)2  for p = p1 + (p2) / 2.
This is the Hardy-Weinberg Principle.  It follows by simply observing that under random mating the
whole business amounts to sampling two letters A or a according to p or (1-p).

Suppose we are able to genetically type a sample of 100 offspring and wish to test the hypothesis of
random mating.  Let’s suppose the data is
            genotype            AA                           Aa                                 aa
            counts                20                             45                                 35
We form “expected counts” by figuring that if the hypothesis of random mating is correct we can
estimate p by the proportion of letters A in the sample which is (2(20) + 45) / 200 = 0.425.  This
leads to “expected” counts
            genotype           AA                            Aa                                 aa
            “expected”       .4252 100        2(.425)(.575) 100              .5752 100
                 i.e.               18.0625                  48.875                         33.0625
The chi-square statistic for a test of the hypothesis of random mating works out to 0.628593.

Calculating DF involves more than just k-1 = 3 – 1 because we have to deduct one DF for
estimating p.  So DF = 3 – 1 – 1 = 1.  Therefore pSIG = P(chi-square with DF = 1 exceeds 0.629)
which is rather close to 1.  If anything this is unusually strong support for random mating.  Hardy-
Weinberg found random mating so stable as to require outside influences such as
mutation/migration etc. in order for a population to evolve.


